Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.169
Filtrar
1.
Enzyme Microb Technol ; 176: 110425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479200

RESUMO

Cytochrome P450s (CYPs) regulate plant growth and stress responses by producing diverse primary and secondary metabolites. However, the function of many plant CYPs remains unknown because, despite their structural similarity, predicting the enzymatic activity of CYPs is difficult. In this study, one member of the CYP736A subfamily (CYP736A61) from tomatoes was isolated and characterized its enzymatic functions. CYP736A61 was successfully expressed in Escherichia coli through co-expression with molecular chaperones. The purified CYP736A61 showed hydroxylation activity toward 7-ethoxycoumarin, producing 7-hydroxycoumarin or 3-hydroxy 7-ethoxycoumarin. Further substrate screening revealed that dihydrochalcone and stilbene derivates (resveratrol and polydatin) are the substrates of CYP736A61. CYP736A61 also mediated the hydroxylation of resveratrol and polydatin, albeit with low activity. Importantly, CYP736A61 mediated the cleavage of resveratrol and polydatin as well as pinostilbene and pterostilbene. Interestingly, CY736A61 also converted phloretin to naringenin chalcone. These results suggest that CYP736A61 is a novel CYP enzyme with stilbene cleavage activity.


Assuntos
Glucosídeos , Solanum lycopersicum , Estilbenos , Resveratrol , Estilbenos/química , Estilbenos/metabolismo , Catálise
2.
Food Funct ; 15(5): 2381-2405, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38376230

RESUMO

Hyperglycemia has become a global health problem due to changes in diet and lifestyle. Most importantly, persistent hyperglycemia can eventually develop into type II diabetes. While the usage of current drugs is limited by their side effects, stilbenes derived from fruits and herbal/dietary plants are considered as important phytochemicals with potential hypoglycemic properties. Herein, the most common stilbenoids in consumed foods, i.e. resveratrol, pterostilbene, piceatannol, oxyresveratrol, and 2,3,5,4'-tetrahydroxystilbene-2-O-ß-glucopyranoside (THSG), are reviewed in this paper. These stilbenes are found to regulate glucose homeostasis via (a) modulation of feeding behaviour and nutrition absorption; (b) restoration of insulin signalling by enhancing insulin production/insulin sensitivity; (c) improvement of gut permeability, gut microbial profile and resulting metabolomes; and (d) amelioration of circadian rhythm disruption. In this review, we have summarized the underlying mechanisms for the hypoglycemic effects of the five most common dietary stilbenoids listed above, providing a comprehensive framework for future study and applications.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Insulinas , Estilbenos , Humanos , Hipoglicemiantes/farmacologia , Resveratrol/farmacologia , Dieta , Estilbenos/farmacologia , Estilbenos/química
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123730, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38061107

RESUMO

A new family of tetraphenylethylene-based N,O-chelated boranil complexes (TPE-BAs) with aggregation-induced emission (AIE) characteristics were developed. X-ray crystallographic analysis indicated that the terminal substituents on the aniline moiety significantly affected the intermolecular stacking mode, thereby influencing the photophysical properties. The stabilities of these compounds are closely related to the substituents on the aniline moiety. Electron-donor-substituted TPE-BA-OMe exhibited the best stability, whereas the electron-acceptor-substituted compounds exhibited poor stability. Benefitting from its AIE properties and suitable lipophilicity, TPE-BA-OMe served as an excellent fluorescent probe for the specific bioimaging of lipid droplets in living cells.


Assuntos
Estilbenos , Estilbenos/química , Diagnóstico por Imagem , Compostos de Anilina
4.
Nat Prod Rep ; 41(2): 298-322, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009216

RESUMO

Covering: 1982 to up to the end of 2022Bioassay guided purification of the extracts of Combretum caffrum led to the discovery of six series of combretastatins A-D with cytotoxic activities ranging from sub nM to >50 µM ED50's against a wide variety of cancer cell lines. Of these, cis-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting in vivo efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved in vitro and in vivo potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A-D, including bioassay guided discovery, total syntheses, and structure-activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.


Assuntos
Antineoplásicos , Bibenzilas , Neoplasias , Estilbenos , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade , Bibenzilas/farmacologia , Bibenzilas/uso terapêutico , Neoplasias/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapêutico , Estilbenos/farmacologia , Estilbenos/química
5.
Bioorg Chem ; 143: 107060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154389

RESUMO

Phytochemical investigation on the aerial parts of Gnetum parvifolium led to the isolation of 15 new and eight known structurally diverse stilbenes. The isolated compounds comprised (E)- or (Z)-stilbene (1-6, 15-20), dihydrostilbene (21), phenylbenzofuran (7, 8, 22), benzylated stilbene (9-11), benzylated stilbene dimer (12), and nitrogen-containing stilbene (13a, 13b, 14) types. The structures of the new compounds (1-12, 13a, 13b, 14) were established through spectroscopic analyses and experimental and calculated ECD data. Compound 12 is the first stilbene dimer connected through a benzyl group. In the anti-neuroinflammatory activity assay, compounds 4, 5, 9-11, 13b, and 16-21 displayed significant inhibitory effects against LPS-induced NO release in BV-2 microglial cells, with IC50 values of 0.35-16.1 µM. Compound 10 had the most potent activity (IC50 = 0.35 µM), and the further research indicated that it could decrease the mRNA levels of iNOS, IL-1ß, IL-6, and TNF-α in a dose-dependent manner.


Assuntos
Gnetum , Estilbenos , Estrutura Molecular , Gnetum/química , Estilbenos/farmacologia , Estilbenos/química
6.
Sci Rep ; 13(1): 21344, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049439

RESUMO

Vascular endothelial cells play a vital role in the health and maintenance of vascular homeostasis, but hyperglycemia disrupts their function by increasing cellular oxidative stress. Resveratrol, a plant polyphenol, possesses antioxidant properties that can mitigate oxidative stress. Addressing the challenges of its limited solubility and stability, gold nanoparticles (GNps) were utilized as carriers. A microfluidic chip (MFC) with dynamic flow conditions was designed to simulate body vessels and to investigate the antioxidant properties of resveratrol gold nanoparticles (RGNps), citrate gold nanoparticles (CGNps), and free Resveratrol on human umbilical vein endothelial cells (HUVEC). The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay was employed to measure the extracellular antioxidant potential, and cell viability was determined using the Alamar Blue test. For assessing intracellular oxidative stress, the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay was conducted, and results from both the cell culture plate and MFC were compared. Free Resveratrol demonstrated peak DPPH scavenging activity but had a cell viability of about 24-35%. RGNPs, both 3.0 ± 0.5 nm and 20.2 ± 4.7 nm, consistently showed high cell viability (more than about 90%) across tested concentrations. Notably, RGNPs (20 nm) exhibited antioxidative properties through DPPH scavenging activity (%) in the range of approximately 38-86% which was greater than that of CGNps at about 21-32%. In the MFC,the DCFH-DA analysis indicated that RGNPs (20 nm) reduced cellular oxidative stress by 57-82%, surpassing both CGNps and free Resveratrol. Morphologically, cells in the MFC presented superior structure compared to those in traditional cell culture plates, and the induction of hyperglycemia successfully led to the formation of multinucleated variant endothelial cells (MVECs). The MFC provides a distinct advantage in observing cell morphology and inducing endothelial cell dysfunction. RGNps have demonstrated significant potential in alleviating oxidative stress and preventing endothelial cell disorders.


Assuntos
Hiperglicemia , Nanopartículas Metálicas , Estilbenos , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Resveratrol/farmacologia , Ouro/farmacologia , Ouro/química , Nanopartículas Metálicas/química , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana , Endotélio , Dispositivos Lab-On-A-Chip , Estilbenos/farmacologia , Estilbenos/química
7.
J Phys Chem B ; 127(30): 6628-6635, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37477604

RESUMO

Misfolding and aggregation of transthyretin (TTR) cause several amyloid diseases. Besides being an amyloidogenic protein, TTR has an affinity for bicyclic small-molecule ligands in its thyroxine (T4) binding site. One class of TTR ligands are trans-stilbenes. The trans-stilbene scaffold is also widely applied for amyloid fibril-specific ligands used as fluorescence probes and as positron emission tomography tracers for amyloid detection and diagnosis of amyloidosis. We have shown that native tetrameric TTR binds to amyloid ligands based on the trans-stilbene scaffold providing a platform for the determination of high-resolution structures of these important molecules bound to protein. In this study, we provide spectroscopic evidence of binding and X-ray crystallographic structure data on tetrameric TTR complex with the fluorescent salicylic acid-based pyrene amyloid ligand (Py1SA), an analogue of the Congo red analogue X-34. The ambiguous electron density from the X-ray diffraction, however, did not permit Py1SA placement with enough confidence likely due to partial ligand occupancy. Instead, the preferred orientation of the Py1SA ligand in the binding pocket was determined by molecular dynamics and umbrella sampling approaches. We find a distinct preference for the binding modes with the salicylic acid group pointing into the pocket and the pyrene moiety outward to the opening of the T4 binding site. Our work provides insight into TTR binding mode preference for trans-stilbene salicylic acid derivatives as well as a framework for determining structures of TTR-ligand complexes.


Assuntos
Amiloidose , Estilbenos , Humanos , Amiloide/metabolismo , Simulação de Dinâmica Molecular , Ligantes , Pré-Albumina/química , Amiloidose/metabolismo , Sítios de Ligação , Proteínas Amiloidogênicas/metabolismo , Pirenos , Ácido Salicílico , Estilbenos/química , Ligação Proteica
8.
J Nat Med ; 77(4): 858-866, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37462863

RESUMO

Four new stilbenes (1-4) and one new flavonoid (5), named cajanines D-H, together with three known stilbenes (6-8) were isolated from the leaves of Cajanus cajan (L.) Millsp. (pigeon pea). The structures of these compounds were elucidated unambiguously on the basis of IR, 1D, and 2D NMR, as well as HRESIMS data. Structurally, stilbenes 1-4 bore an isopentyl side chain, and further hydroxylation of compounds 1-3 generated a greater variety of structural forms. Compound 5 was a flavonoid owning an isopentyl side chain. Besides, antibacterial activity of the isolated compounds against Staphylococcus aureus, Bacillus cereus, and Escherichia coli was studied in vitro. Compounds 1-8 were endowed with profound antibacterial activity. Among them, the MIC values of compounds 4, 6, and 7 against S. aureus were 1.56, 0.78, and 0.78 µg/mL, respectively, among which 6 and 7 had better antibacterial activity than the positive control Vancomycin with the MIC values of 1.56 µg/mL. Additionally, the anti-SARS-CoV-2 main protease activity of all the isolated compounds was evaluated, and it was worth mentioning that the IC50 values of compounds 5-7 were 8.27, 4.65, and 8.30 µM, respectively, being comparable to the positive control Ebselen. Our findings may provide valuable guidance for the application of stilbenes as lead compounds in the future for the development of drugs with antibacterial or anti-COVID-19 activity.


Assuntos
COVID-19 , Cajanus , Estilbenos , Flavonoides/farmacologia , Cajanus/química , Staphylococcus aureus , Estilbenos/química , SARS-CoV-2 , Antibacterianos/farmacologia
9.
Molecules ; 28(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513473

RESUMO

4-Hydroxyphenylacetate-3-hydroxylase (4HPA3H; EC 1.14.14.9) is a heterodimeric flavin-dependent monooxygenase complex that catalyzes the ortho-hydroxylation of resveratrol to produce piceatannol. Piceatannol has various health benefits and valuable applications in food, medicine, and cosmetics. Enhancing the catalytic activity of 4HPA3H toward resveratrol has the potential to benefit piceatannol production. In this study, the critical amino acid residues in the substrate pocket of 4HPA3H that affect its activity toward resveratrol were identified using semi-rational engineering. Two key amino acid sites (I157 and A211) were discovered and the simultaneous "best" mutant I157L/A211D enabled catalytic efficiency (Kcat/Km-resveratrol) to increase by a factor of 4.7-fold. Molecular dynamics simulations indicated that the increased flexibility of the 4HPA3H substrate pocket has the potential to improve the catalytic activity of the enzyme toward resveratrol. On this basis, we produced 3.78 mM piceatannol by using the mutant I157L/A211D whole cells. In this study, we successfully developed a highly active 4HPA3H variant for the hydroxylation of resveratrol to piceatannol.


Assuntos
Oxigenases de Função Mista , Estilbenos , Oxigenases de Função Mista/metabolismo , Resveratrol/metabolismo , Estilbenos/química
10.
Chembiochem ; 24(21): e202300477, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37490046

RESUMO

Ozonolysis is a useful as well as dangerous reaction for performing alkene cleavage. On the other hand, enzymes are considered a more sustainable and safer alternative. Among them, Caulobacter segnis dioxygenase (CsO2) known so far for its ability to catalyze the coenzyme-free oxidation of vinylguaiacol into vanillin, was selected and its substrate scope evaluated towards diverse natural and synthetic stilbenoids. Under optimized conditions, CsO2 catalyzed the oxidative cleavage of the C=C double bonds of various trans-stilbenes, providing that a hydroxyl moiety was necessary in para-position of the phenyl group (e. g., resveratrol and its derivatives) for the reaction to take place, which was confirmed by modelling studies. The reactions occurred rapidly (0.5-3 h) with high conversions (95-99 %) and without formation of by-products. The resveratrol biotransformation was carried out on 50-mL scale thus confirming the feasibility of the biocatalytic system as a preparative method.


Assuntos
Dioxigenases , Ozônio , Estilbenos , Dioxigenases/metabolismo , Resveratrol , Estilbenos/química
11.
J Phys Chem B ; 127(30): 6684-6693, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37481745

RESUMO

A number of biochemical reactions proceed inside biomembranes. Since the rate of a chemical reaction is influenced by chemical properties of the surrounding environment, it is important to examine the chemical environment inside the biomembranes. Although the energy transfer characteristics are a basic and important property of a reaction medium, experimental investigation of the thermal conducting capabilities of the biomembranes is a challenging task. We have examined the energy transfer characteristics of lipid bilayer membranes of liposomes, a good model system for the biomembrane, with picosecond time-resolved Raman spectroscopy. The cooling kinetics of the first excited singlet (S1) state of trans-stilbene solubilized within the lipid bilayer membranes is observed as a peak shift of the 1570 cm-1 Raman band of S1 trans-stilbene. The cooling rate constant of S1 trans-stilbene is obtained in six lipid bilayer membranes formed by phospholipids with different hydrocarbon chains, DSPC, DPPC, DMPC, DLPC, DOPC, and egg-PC. We estimate the thermal diffusivity of the lipid bilayer membranes with a known correlation between the cooling rate constant and the thermal diffusivity of the solvent. The thermal diffusivity estimated for the liquid-crystal-phase lipid bilayer membranes is 8.9 × 10-8 to 9.4 × 10-8 m2 s-1, while that for the gel-phase lipid bilayer membranes is 8.4 × 10-8 to 8.5 × 10-8 m2 s-1. The difference in thermal diffusivity between the two phases is explained by a one-dimensional diffusion equation of heat.


Assuntos
Bicamadas Lipídicas , Estilbenos , Bicamadas Lipídicas/química , Lipossomos/química , Análise Espectral Raman/métodos , Fosfolipídeos/química , Estilbenos/química , Fosfatidilcolinas/química
12.
Anal Chem ; 95(24): 9139-9144, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37284794

RESUMO

In this work, a sensitive signal-on electrochemiluminescence biosensor using liposome-encapsuled 1,1,2,2-tetra(4-carboxylphenyl)ethylene (TPE) as a promising aggregation-induced electrochemiluminescence (AIECL) emitter for detection of biomarkers was developed. Aggregation-induced enhancement occurs internally through the spatial confinement effect and intramolecular self-encapsulation of encapsulating TPE and triethylamine (TEA) molecules in liposome cavities. Peptide sequence WTGWCLNPEESTWGFCTGSF (WF-20) was used to replace the antibody for reducing the steric hindrance of the sensing surface while taking into account the affinity. The proposed sensing strategies showed satisfactory properties for detection of human epidermal growth factor receptor 2 (HER2) ranging from 0.01 to 500 ng/mL with a limit of detection of 6.65 pg/mL. The results confirmed that encapsulation of luminescent molecules in the vesicle structure for triggering the AIECL phenomenon is a promising method to prepare a signal label for a trace detection biomarker.


Assuntos
Técnicas Biossensoriais , Estilbenos , Humanos , Lipossomos , Receptor ErbB-2 , Estilbenos/química , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
13.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175187

RESUMO

Two new stilbenoids, cajanstilbenoid C (1) and cajanstilbenoid D (2), together with eight other known stilbenoids (3-10) and seventeen known flavonoids (11-27), were isolated from the petroleum ether and ethyl acetate portions of the 95% ethanol extract of leaves of Cajanus cajan (L.) Millsp. The planar structures of the new compounds were elucidated by NMR and high-resolution mass spectrometry, and their absolute configurations were determined by comparison of their experimental and calculated electronic circular dichroism (ECD) values. All the compounds were assayed for their inhibitory activities against yeast α-glucosidase. The results demonstrated that compounds 3, 8-9, 11, 13, 19-21, and 24-26 had strong inhibitory activities against α-glucosidase, with compound 11 (IC50 = 0.87 ± 0.05 µM) exhibiting the strongest activity. The structure-activity relationships were preliminarily summarized. Moreover, enzyme kinetics showed that compound 8 was a noncompetitive inhibitor, compounds 11, 24-26 were anticompetitive, and compounds 9 and 13 were mixed-competitive.


Assuntos
Cajanus , Estilbenos , Flavonoides/farmacologia , Flavonoides/química , Cajanus/química , alfa-Glucosidases , Estilbenos/farmacologia , Estilbenos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Glicosídeo Hidrolases/farmacologia
14.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175197

RESUMO

Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system's response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages' contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.


Assuntos
Estilbenos , Vitis , Animais , Humanos , Vitis/química , Resveratrol/metabolismo , Frutas/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Estilbenos/química , Inflamação/tratamento farmacológico
15.
Molecules ; 28(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37110792

RESUMO

Cancer is one of the most common causes of human death worldwide; thus, numerous therapies, including chemotherapy, have been and are being continuously developed. In cancer cells, an aberrant mitotic spindle-a microtubule-based structure necessary for the equal splitting of genetic material between daughter cells-leads to genetic instability, one of the hallmarks of cancer. Thus, the building block of microtubules, tubulin, which is a heterodimer formed from α- and ß-tubulin proteins, is a useful target in anti-cancer research. The surface of tubulin forms several pockets, i.e., sites that can bind factors that affect microtubules' stability. Colchicine pockets accommodate agents that induce microtubule depolymerization and, in contrast to factors that bind to other tubulin pockets, overcome multi-drug resistance. Therefore, colchicine-pocket-binding agents are of interest as anti-cancer drugs. Among the various colchicine-site-binding compounds, stilbenoids and their derivatives have been extensively studied. Herein, we report systematic studies on the antiproliferative activity of selected stilbenes and oxepine derivatives against two cancer cell lines-HCT116 and MCF-7-and two normal cell lines-HEK293 and HDF-A. The results of molecular modeling, antiproliferative activity, and immunofluorescence analyses revealed that compounds 1a, 1c, 1d, 1i, 2i, 2j, and 3h were the most cytotoxic and acted by interacting with tubulin heterodimers, leading to the disruption of the microtubular cytoskeleton.


Assuntos
Antineoplásicos , Neoplasias , Estilbenos , Humanos , Tubulina (Proteína)/metabolismo , Estilbenos/química , Oxepinas/metabolismo , Células HEK293 , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/química , Colchicina/química , Moduladores de Tubulina/química , Sítios de Ligação , Proliferação de Células
16.
Biomed Pharmacother ; 160: 114394, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774724

RESUMO

Rheum lhasaense A. J. Li et P. K. Hsiao, a stout herb plant from the Polygonaceae, is a typical Tibetan folk herb with heat-clearing and detoxifying effects, but does not have the typical laxative effect compared with other rhubarb plants. Nevertheless, its chemical composition and pharmacological activities still lack in-depth research. The present study endeavored to analyze the possible phytochemical constituents in R. lhasaense and explore the main compound piceatannol-3'-O-ß-D-glucopyranoside (PG) effect on cognitive impairment and its underlying mechanism. The chemical profile of R. lhasaense discovered 46 compounds, including 27 stilbenoids and 13 gallotannins using UPLC-Q-TOF-MS/MS. The UPLC determined the contents of 6 main stilbenoids, among which the content of PG was the highest, up to 61.06 mg/g. Moreover, behavioral tests showed that PG (40 mg/kg and 160 mg/kg) administration markedly ameliorated memory impairments of scopolamine-induced mice. Biochemical parameters showed that PG treatment alleviated the levels of Ach, AchE, and inflammatory factors while elevating the levels of antioxidants in mice. In addition, network pharmacology was performed to reveal PG exert an mild cognitive impairment effect by participating in neurodegenerative disease pathways, proliferation and apoptosis-, and inflammation-related pathways. Eventually, the results of molecular docking and the qRT-PCR revealed that PG down-regulated the mRNA expressions of MMP3, MMP9 and BACE1 in cognitive impairment mice brain tissue. In conclusion, our results demonstrated that PG mitigated scopolamine-induced cognitive dysfunction in mice by targeting the BACE1-MMP3/9 pathway, and PG might be a promising mild AD drug candidate.


Assuntos
Doenças Neurodegenerativas , Rheum , Estilbenos , Camundongos , Animais , Rheum/química , Espectrometria de Massas em Tandem , Secretases da Proteína Precursora do Amiloide , Metaloproteinase 3 da Matriz , Simulação de Acoplamento Molecular , Ácido Aspártico Endopeptidases , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Estilbenos/química , Derivados da Escopolamina
17.
Bioconjug Chem ; 34(3): 562-571, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36847641

RESUMO

We report a new peptide-based urchin-shaped structure prepared through two-step self-assembly of tetraphenylethylene-diserine (TPE-SS). Hydrogelation generated nanobelts through the first stage of self-assembly of TPE-SS; these nanobelts further transformed on silicon wafers into urchin-like microstructures featuring nanosized spines. The presence of the TPE moiety in the hydrogelator resulted in aggregation-induced emission characteristics both in the solution and in the gel phases. TPE-SS has the lowest molecular weight of any TPE-capped hydrogelator with ß-sheet-like structures under physiological pH. This new design strategy appears to be useful for generating three-dimensional self-assembled microstructures and multifunctional biomaterials. We found that TPE-SS is biocompatible with human mesenchymal stem cells and breast cancer cells, making them potential applications in tissue engineering and biomedical research.


Assuntos
Estilbenos , Humanos , Estilbenos/química , Materiais Biocompatíveis
18.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838705

RESUMO

Combretastatin A-4 (CA-4) is a potent tubulin polymerisation inhibitor. However, the clinical application of CA-4 is limited owing to its low aqueous solubility and the easy conversion of the olefin double bond from the more active cis- to the less active trans-configuration. Several structural modifications were investigated to improve the solubility of CA-4 derivatives. Among the compounds we synthesized, the kinetic solubility assay revealed that the solubility of compounds containing a piperazine ring increased the most, and the solubility of compounds 12a1, 12a2, 15 and 18 was increased 230-2494 times compared with that of the control compound (Z)-3-(4-aminophenyl)-2-(3,4,5-trimethoxyphenyl)acrylonitrile (9a). In addition, these synthesised stilbene nitriles had high anticancer cell (AGS, BEL-7402, MCF-7, and HCT-116) selectivity over L-02 and MCF-10A normal cells while maintaining micromolar activity against cancer cells. The most cytotoxic compound is 9a, and the IC50 value is 20 nM against HCT-116 cancer cells. Preliminary studies indicated that compound 12a1 had excellent plasma stability and moderate binding to rat plasma proteins, suggesting it is a promising lead compound for the development of an anticancer agent.


Assuntos
Antineoplásicos , Estilbenos , Antineoplásicos/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Solubilidade , Estilbenos/química , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Humanos , Linhagem Celular Tumoral
19.
Bioorg Chem ; 133: 106429, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841048

RESUMO

The pterostilbene skeleton is a promising chemical scaffold that exerts anti-inflammatory, anti-depressant, and anti-tumor effects. In this study, we aim to reduce in vivo and in vitro toxicity of compound 32 (preliminary work) and maintain its biological activity. A series of novel pterostilbene derivatives (D1-D43) were designed and synthesized, and their anti-inflammatory activities were screened. All compounds were screened to evaluate their inhibitory effect on LPS/Nigericin-induced IL-1ß production and pyroptosis. The structure-activity relationships was deduced, and finally 1-((E)-4-(2-ethoxyethoxy)styryl)-3,5-dimethoxy-2-((E)-2-nitrovinyl)benzene (D22) was found to be a low-toxic compound with most potent inhibitory efficacy (against IL-1ß: IC50 = 2.41 µM). Preliminary mechanism studies showed that compound D22 may affect the assembly of NLRP3 inflammasome by targeting NLRP3 protein, thereby inhibiting the activation of NLRP3 inflammasome. The in vivo anti-inflammatory activity indicated that compound D22 had significant therapeutic effects on DSS-induced mouse acute colitis models.


Assuntos
Colite , Inflamassomos , Estilbenos , Animais , Camundongos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estilbenos/química , Estilbenos/farmacologia
20.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769058

RESUMO

Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and trans-δ-viniferin) stilbenoids for their capability to modulate the production of bacteria-induced cytokines (IL-12, IL-10, and TNF-α), as well as lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), in murine bone marrow-derived dendritic cells. All monomeric species showed dose-dependent inhibition of E. coli-induced IL-12 and TNF-α, whereas only resveratrol and piceatannol inhibited IL-10 production. All monomers, except trimethoxy-resveratrol, inhibited L. acidophilus-induced IL-12, IL-10, and TNF-α production. The dimer dehydro-δ-viniferin remarkably enhanced L. acidophilus-induced IL-12 production. The contrasting effect of resveratrol and dehydro-δ-viniferin on IL-12 production was due, at least in part, to a divergent inactivation of the mitogen-activated protein kinases by the two stilbenoids. Despite having moderate to high total antioxidant activity, dehydro-δ-viniferin was a weak inhibitor of LPS-induced ROS formation. Conversely, resveratrol and piceatannol potently inhibited LPS-induced ROS formation. Methylated monomers showed a decreased antioxidant capacity compared to resveratrol, also depending on the methylation site. In summary, the immune-modulating effect of the stilbenoids depends on both specific structural features of tested compounds and the stimulating bacteria.


Assuntos
Citocinas , Estilbenos , Camundongos , Animais , Resveratrol/farmacologia , Lipopolissacarídeos/farmacologia , Antioxidantes/farmacologia , Interleucina-10 , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Medula Óssea , Escherichia coli , Estilbenos/farmacologia , Estilbenos/química , Interleucina-12 , Células Dendríticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...